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Abstract

We discuss the use of thermal emission spectra recorded by satellites
to construct climate indices that can detect the evolution of a specific
climate forcing in a time series. The two important issues arc selectivity
against climate forcings other than one that is sought, and sensitivity to
the required forcing. We show that indices with selectivity canbe found,
and that their sensitivity can be high.

1 Introduction

In our present state of knowledge we cannot objectively assess the probable suc-
cess of a climate projection over a period of 25 to 50 years. The most promising
approach to this problem appears to be the application of signal processing tech-
niques to the analysis of climate time series (Hasselmann, 1979, 1994; North et
al, 1994; North and Kim, 1994; Barnett, 1986; Barnett and Nassclman, 1979;
Barnett and Schlesinger, 1987). If a climate forcing can be detected at small
signal levels, some confidence may be placed in further projections.

At the basis of such techniques is the comparison between an observed at-
mospheric state, and what might have been in the absence of a climnate forcing.
However, we do not know all of the factors involved in the fictional, unforced
state, and we cannot predict it. Unless the signal is so large as to leave no doubt
as to its presence, the only solution to this dilemma appears to be for the signal
of the climate forcing under investigation to be characteristically different from
al others. This may not always be possible. ¥or example, the effects upon the
climate state of changes in CO,and N,0 are almost identical. Nevertheless,
there arc signals that can discriminate between less similar forcings.
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One example of a discriminating signal has been discussed by Charlock
(1984) and by Kiehl (1983, 1985, 1986). A singlespectrum of thermal radi-
ation emitted to space is defined by ~ 10 independent variables. As Kiehl
(1986) points out, this gives scope for discriminating between different modes
of forcing. There is an additional feature of this signal that hasnot been em-
phasized. In climate studies, the first law of thermodynamics acts principally
to determine the temperature of the mean emission layer. Given the height of
this layer, and the propensity of dynamical factors to produce a fixed temper-
ature lapse rate in the troposphere, this temperature defines the climate state
of the lower atmosphere. ‘I'his cannot be said about the ground temperature
(the most frequently-used climate index), which is separated from the bulk of
the atmosphere by a variable boundary layer. The character of the radiation
escaping to space hasunique significance for understanding the climate.

Atmospheric variables may be recovered by standard inversion techniques
from emission spectra with spectral resolutions of 1 to 10 cin™*. This defines
the spectral resolution required for discriminating signals. It is quite easy to
attain. Such data have been available since the early 1970's and arc a planned
part of the EOS missions.

The AIRS spectrometer, scheduled to fly on the second EOS mission, has
a spectral range of 650 to 3000 cm™*! and a resolving power of 1200 (Aumann
and Pagano, 1994). The instrumental noise for AIRS is much less than the
observational noise. IRIS was a remarkable fouricr transform spectrometer that
was flown in the early 1970's on Nimbus 3 and 4 by Hanel and his collaborators.
The spectral range of IRIS was 400 to 1600 cm-" and the spectral resolution was
2.8 em™!(Kundeet al, 1974). The system noise is far less thanthe observational
noise. Approximately 9 months data arc available from Nimbus 4. Both AIRS
and IRIS are calibrated against black bodies, and they could be compared with
a time separation of 25 years or more, after allowance has becnmade for the
differences in spectral resolution.

IRIS was an instrument ahead of its time. A dvances in detector technology
now permit better spectral resolution and a much larger spectral range. Such
instruments can now be carried on very small satellites and on unmanned air-
planes. To give substance to our discussion we shall consider the possibilities
of a continuous series of IRIS measurements, with uncertainties based on the
Nimbus 4 data.

The “detection problem” is one of finding an acceptable signal-to-noise ratio:
the signal should (if our theories arc correct) correspond to a prediction, eg the
predicted effect of doubling atmospheric carbon dioxide; while the noise comes
from unpredicted, natural events, the spectrum of which is known to extend from
hours to decades and longer. Ideally, both signal and noise should be taken from
observation, but wc cannot do this because forced climate signals nave not yet
been detected, and because the IRIS data extend over only 9 months, so that
the spectrum of noise available to us is limited to shorter periods.

We proceeded as follows. We may take the signa from a climate model,



in this case from a radiative-convective model. The noise is treated differently
depending upon whether we have data upon it or not. Fromthe IRIS data wc
obtain “weather” noise with some other short-period components. We handle
the signa in such a way as to obtain high sign al-to-noise ratios against this
noise component. We may refer to this as optimizing sensilivity.

The atmosphere reaches a steady state with its boundary conditions in about
one month. ‘1’bus, as far as the atmosphere is concerned, noise with periods
much longer than a month may be regarded as an unknown forcing, the effects
of which will usualy differ from the effect of doubling carbon dioxide. We seck
methods of processing the data that discriminate as much as possible against
examples of these unknown forcings. This we may call sceking selectivity.

The aim of our investigation was to understand how sensitivity and selectiv-
ity may be optimized, and how they trade off against each other. We used the
signal from doubling carbon dioxide and three other forcings (from changes in
the solar constant, relative humidity,and cloud smount), that we consider to be
representative of unknown forcings in general.ln subsequent papers we expect
to present an analysis of long-period noise based upon actual climate data

2 Climate forcing

Figure 1 shows the four examples of climate forcing in terrs of changes of
brightness temperature of the outgoing radiation to which they give rise. The
associated air temperature changes are shown in figure 2. In each case the change
in surface temperature is +1.63 K. This numnber arose from the calculation for
doubled CO2, shown in the first panel of figure 1. The other three forcings were
adjusted to give the saine change of sui face temperature, so that this parameter
cannot be used to distinguish between these forcings.

Dr. Arthur Hou of Goddard Space Flight Center kindly alowed us to usc his
radiative-tropical convection model to caculate climate changes. Input param-
eters to this model arc the solar flux, water-vapor and CO2 concentrations, and
cloud amount. Details of the model are given by Lindzenetal (1982). Radi-
ances were calculated with MODTRAN (Anderson etal, 1993), at a resolution
of 1cin~!, and subsequently convolved with the IRIS dit function. 34 levels at
I-km intervals were used in the calculations. The atmosphere above 34 km is
neglected.

The climate forcings are defined as follows:

Doubling CO,. The carbon dioxide is doubled from 330 to 660 ppmv. Following
the approach of Kiehl (1986) we have subtracted from the computed results the
change that would occur if the carbon dioxide were to vary without changing
the temperature. The rationale for this is th at the concent ration of carbon
dioxide is known from chemical measurements, and its purely optical effects
can be removed from observed data. These reduced data arc influenced only
by the changes that take place in temperature and humidity, and provide an
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Figure 1: Examples of climate forcing. The four panels show differences in the
brightness temperature for four climate forcings, details of which are given in
the text. The spectral resolution is the same as for IRIS, 2.8 ¢!,
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Figure 2: Air temperature changes accomnpanying climate forcing. The quantity
plotted is the change of temperature that goes with the climate changes of figure
1. The change of surface temperature in each case is+1.63 K. ‘I'his similarity
is by design. The climate model used has a surface boundary layer, so that

there is generally a discontinuity of temperature between the surface and the
atmosphere.




appropriate for a test of the existence of the predicted climate change.
Relative humidity. The canonical treatment of water vapor in the Houmodel is
the Manabe-Wetherald climatology for the relative humidity,

RH(z)= 0.816 {:}E% - 0.02} , p(z) > 0.02p(0),

= o, p(z) < 0.02p(0). 1)

p(z) is the pressure at atitude, z.Since the relative humidity is given, the model
has positive water-vapor feed back, throughthe temperature. The changed
relative humidity that wc adopt is defined by,

_ p(2) 1
RI(z) = 0.929 %p(o)o.ooss ,Jp(z)> 0.0035P(0),
= 0, p(z2) < 0.0035p(0). 2

Solar fluz. The solar flux was changed from 300 to 305.5 W m™>
Cloud. MODTRAN has an option to include a model cirrus cloud. The cloud
forcing was obtained by including 3.1% cloud cover.

The weather noise is discussed in §5, and spectral data arc shown in figure
3. When wc compare these data with figure 1 it is immediately apparent that
choices of spectral features can greatly influence both sensitivity and selectivity.
The maximum signal for carbon dioxide forcing and minimurn noise both occur
in the center of the 15 pm band, and if sensitivity were the only consideration
this would be the optimum wavelength to employ. However, there is no selec-

tivity associated with data from any single wavelength. The question must be
examined in greater detail.

3Selectivity

‘I'he observed data are brightness temperatures at times i and frequencies v,
T;(vx). We are concerned with differences in tile observations at two times i
Aij(ve) = Ti(ve) - T5(ve). ®3)

Predicted difference spectra for four diflerent climate changes (figure 1) are
designated ¢(ve), ¢’ (vi), " (vi), 8" (vk). (i) is the climate change spectrum
that we are looking for (ie changing CO2), while we wish to discriminate against
the primed spectra.

To do so we weight A;;(vx) with the spectrum ¢(vk). T'his can be done in a
variety of ways. we have explored two using the indices,

A‘.j - );jﬂéi"_’“_)i{’(’i@b (4)
Dop ()22, 1)




and,
Al = o) - Ai}{d(ve) — 6}
T e - )23 1)

In equation (5) A, and ¢ are both averages over the Vi. Both (4) and (5) are
independent of the amplitudes of ¢x and of the order of &. The sum over & may
be over any spectral region, or over a series of discrete frequencies, provided
only that they are contained within the IRIS data We have investigated five
spectral regions, and we report upon four. There is a great deal of room here
for selection of optimum climate indices.

What governed our choice of indices as defined in equations (4) and (5)? In
the final analysis it is the selectivity and sensitivity that will count, regardless
of the reasons for the choice. (4) was chosen because it weights the CO2 forcing.
(5) was chosen in case the selectivity should be adversely aftected by mean
spectral shifts, that may be common to other forms of forcing.

10 investigate selectivity we substitute first ¢ and then ¢'in place of A,
in eguations (4) and (5) and take ratios. We further normalize the root- mean-
square amplitudes of the theoretical spectra to be the same. The absolute values
of the ratios then vary over the range O to 1. 1 represents no discrimination in
favor of CO» forcing, while O represents complete discrimination. The two ratios

(®)
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R = 2afd(w) _¢Wa' (), 4} | . )
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Equation (7) is the conventional correlation cocflicient between ¢ and ¢’.

Tables 1 and 2 show caculations from (6) and (7) when ¢’ is change of hu-
midity, change of solar constant, or change of cloud amount. These calculations
are for four spectral ranges. The first row includes al IRIS data. The second
and third rows split this range at the high-frequency wing of the 15 um CO;
band. The third row is dominated by the water-vapor continu urn, the behavior
of which depends chiefly on the common change in ground temperature. The
fourth row is essentially limited to the 15 pm band.

In tables 1 and 2 we should note the signs. A positive sign implies that
the forcing can reinforce CO,, while a negative sign implies that the unwanted
forcing may counteract it; either confuses conclusions about cause and effect.
Only small absolute values of (6) and (7) are helpful. In this respect the most
important feature of tables 1 and 2 is that a small absolute value exists for
each forcing under at least one circumstance; but no single circumstance gives
good selectivity for al three forcings. An added consideration is that, when
selectivity is good, the signal-to-noise ratio, and hence the sensitivity, may be




Table 1. Selectivity of climate indices. The table compares vaues from eguation
(6) for four spectral ranges. The final column is the square of a signal-to-noise
ratio that will be discussed in §5.

spectral R from equation (6) (S/N)?
region, cm™! hinmiidity solar rad. cloud
400.5-1486.5 4-774 +.659 +.771 131
400.s700.0 +.552 -.131 +.290 4.85
700.0-1450.0 +.915 +.970 +.974 9.05
600.0-740.0 +.614 _299 457 716

Table 2: Selectivity of climate indices. As for table 1, but using equation (7).

spectral R’ from equation (7) (S/N)?
region, cm-"} | humsidity solar rad. cloud
400.5-1486.% +.686 -t.379 +.773 0.94
400.5-700.0 +.907 -.195 +.752 4.40
700.0-1450.@ +.100 -t.722 +.780 0.97

600.0-740.0 +.887 +.879 +.995 16.59




too small to be useful. An example is the relative humidity forcing in table 2
for 700-1450 cm’!. )

A feature of table 1 is the lack of selectivity forthe index Ai; in the spectral
range 700.0 -1450.0 cm-l. This range is dominated by the surface and near-
surface temperature, a single parameter, for which selectivity is not possible.
It does not give a notably high signal-to-noise ratio. This comment has sig-
nificance with respect to the conventional use of series of ground temperature
measurements to detect climate c¢h angc. The selectivity for this spectral re-
gion is improved by the use of the index (5), which eliminates the effect of a
uniform shift in the emission temperature (an important contribution from the
water-vapor window region), see table 2, but at t he expense of sensitivity.

In the following sections we confine our attention to the spectral range 600.0-
740.0 cm~?!, for the reasons that table 1 shows some selectivity, with above
average signal-to-noise ratio, whiletable 2 shows exceptional signal-to-noise
ratio. The choice of climate index and spectral range will dependon the question
that an investigator wishes to ask. In this paper we seek only to demonstrate
that useful choices may be made.

4 Sensitivity

A, (and similarly for Al;) contains a term A, which is the signal that is sought.
The CO,signal should, for small changes, be proportional to pij = <fi-pj,;where
p is the density of CO,. For the calculations shown in the first panel of figure
1, pij = po, where po is the current density of CO,, ie the change concerns
doubling the density from poto 2po. The important question is to what degree
the brightness temperature is sensitive to the density of CO2.To assess this,
we evaluate the correlation coeflicient between A ij and #ij,

. : s Dijpij . ®)
[Zij A?j >:.‘,' (P?j - /’2)]

2.

where p :i'f;—jis the mean value of pij over the period of observation. The

mean value of Aijis, by virtue of the definition (3), identically zero.
The significance of the correlation may be tested with the t-distribution. For

90% significance, 4 4
2oy ey — 9
) PO R} ©)

where D is the number of independent degrees of freedom. For 70% significance,

2
e — lo
z (10)




Later wc shall assume that there are o independent climate observations in one
year, so that,

D = ay, 11)

where y is the number of years over which the observations extend.
Theslope of the regression,

~ ([\2 B 3
ij ijz ) (12)
iatel e p?)
is the rate of change of brightness temperature with CO, density change, the
quantity that theories can predict.

Next, we assume that the observations can be unambiguously’ separated into
climate signal and climate noise,

b=r

where A, is the signal, and A¥ is the noise,
Yo AN =o. (14)
ij

This separation is difficult to justify objectively. However, the same assumption
is made by all other investigators known to us, and appears to be unavoidable.
The signal is obtained by substituting,

Aij () = —’;—;'—;—wk), (15)

in equation (4), to give,

g = oo (Lef) V. (19

i po 2l
Use of the alternative climate index, equation (5), is accomplished by replacing
é(vi) by ¢(vk) -4.
The correlation coefficient, (8), can now be written,

-~ P?"f'a
o 8o R
N™ 05 1
where the square of the “signa” is,

g2 o Zi%f_(l"_k), (18)
k

17)

and tbc square of the “noise” is,

10




ANY2
N2= Eﬂ;\(g_-‘_irz-, (19)
) Jij 1
W aluate the t phr /E‘ for the ial case of contin-
e may evaluate the term ).~ 1] 2 specia
uing, frequent observations. If we observe for y years with an increase P1 per

year, the maximum Pij iS ¥P1. Thesuniinvolvesall p;; ess than this amount.

If the number of samples is large and if they are evenly distributed over y years,
we may evaluate the sum as adouble integral,

(20)

The current value for the ratio ﬁi is5x 1079,

5 Noise

The signal, eguation (18), is unambiguous. The difficulty in assessing sensitivity
lies in calculating the noise term, (19), and deciding upon thenuwnber of inde-
pendent degrees of freedom. In fact, climate noise is a function of the period
of averaging or of observation. It must be treated by tirnc-series analysis, and
a simple correlation coeflicient is an inappropriate measure of the emergence of
a signa. We cannot, however, perform a more sophisticated analysis with the
data available. B :

We use equation (19) but with A;;in place of A{‘J’ Over the period with
which we shall be concerned there is little diflerence between these two quantities
because the noise dominates the signal. This procedure slightly overestimates
the noise.

Ajj is calculated from equations (4) or (5) using 1 |-day means of IRIS data
We assume that each 1 |-day mean is an independent data set. On this basis wc
estimate that there are 30 independent data sets in each year. This procedure
probably underestimates the noise, and overestimates the number of degrees of
freedom; our conclusions probably err on the side of optimisin.

The IRIS data were partitioned into latitude zones, as indicated in table 3,
and selected for clear skies on the basis that the emission temperature in the
water-vapor window is within 10 K of the sea-surface climatology of Reynolds
(1982). The calculations in table 3 are for clear skies, and the spectra range
600.0 to 740.0 cm-l. ‘I'he data come from a variety of locations in each ge-
ographical region and cent ain an avoidable “geographic’ noise component; on
this account our noise estimates are larger than they need to be.

From the data in table 3 we conclude that the tropics give better signal-to-
noise ratios than other latitudes. Since there is a very large amount of tropical

1




‘I'able 3: Spectral noise from IRIS data.The data arc for clear skies and for

600.0 to 740.0 cm-. Compare these results to the square of the signal, 4.78 K?
for index (4), and 3.88 K*for index (5).

zone latitudes longitudes N% K?
cqu()  cqud)

I - - I nLmImn T

equatoriial -10 to 410 --180to - 180 0.67 0.23
warmmn pool --10 to +10+120to -1150 0.56 0.38
N nmileld titiedees| +30 to +50 --180 to -t 180 4.70 2.15
S nmmighhdiittudes | —30 to -50 —180 to -1 180 5.00 193
N Pacific 445 to +60 __—180 to -135 13.4 _519

1RIS data, there is little to be gained by including extra-tropical latitudes. Table
3 also indicates a dight advantage of index (5) over (4).

Important insights into the character of the climate indices can be obtained
from the spectrum of emission temperature variance, sec figure 3. These calcu-
lations arc for I-day means. For n-day means the standard deviation should
be smaller by a factor ~+/11. I'he data illustrate two points, the first being the
superiority of tropical, clear-sky data. Thesecond is the complex nature of the
spectral character of our climate indices. As was pointed out earlier, figure 1 is
the signal, and figure 3 is the noise, and the investigator is free to choose any
frequencies. Comparison between these two figure clearly illustrates the wide
range of choices that are available for the climate indices.

6 Discussion

From (9), (12), (17), and (20) the number of years required for detection with
90% significance is given from,

s 72 () (N

e () (5)- @
For 70% significance the numerical factor should be halved. Table 4 shows the
number of years to detection of CO,forcing, based on equations (21) and (4),
for clear skies in the tropics, and for the spectral range 600.0 to 740.0 cm™!.
Calculations have been made for 70% and 90% certainty, and for both the CO,
forcing that we have discussed, and for twice this forcing. A ground temperature

change of 3.26 K is closer to the median of calculations made with other climate
models. For a ground-temperature change for CO2 doubling of 3.26 K, and

12
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Table 4: Years to detection. Calculations are for index (4), the tropical zone,

clear skies, and the spectral range 600.0 -740.0 cm™'. Wcassume @ = 30, and
£L— 57X 1073, For the climate index (5), columns 4, 5, and6 should be

divided by 1.32.

case | significanince ATy(2 x CO0,), K years %rise AI'_(gctp:Lnﬁ?LK.f

1 90% 163 218 124 0.20
2 90% 3.26 137 78 0.25
3 70% 163 172 98 0.16
4 0% 3.26 109 62 1020

for 70% certainty, the calculation suggests detection after 10.9 years when COq
concentrations have risen by 6.2%, and the sur face temperature has risen by
0.2 K. For the climate index (5), these figures should al be reduced by the
factor 1.32.

These numbers are principaly of qualitative significance. The time to detec-
tion is encouragingly short, but a more satisfactory time-series anaysis should
be made. Such analysis requires knowledge of uoise on time scales longer than
the period of the IRIS data. Data may be obtained from existing archives of
climate data or from model simulations, and the outgoing spectrum can be con-
structed by MO DTRAN. We intend to perform this analysis in the near future.

Our purpose in this paper has been to illustrate the possibility of developing
climate indices that may be more sensitive than conventional indices, and which
may, at the same time, be selective towards one particular climate forcing. There
is a wide choice of possible indices. There is nothing unique about the indices in
equations (4) and (5), and we have not covered all of the possibilities associated
with the spectral summation.

Finaly, we may relate this discussion to current attempts to use the geo-
graphical distribution of signal and noise to optimize the detection of a forced
signal in a climate time series. Hasselman and Barnett (1979) introduced the
basic formalism by representing the forced clin iate signa in terms of Empirical
Orthogonal Functions (EOF’s), and using a nul hypothesis to test for a forced
climate response in the projection of the data set on the EOF’s. Barnett (1986)
extended this idea to multiple, geographically-based climate indicators, which
be caled “fingerprints”, using pattern correlation techniques, again exploiting
the basic EOF formalism. Recently both Hasselman (1995) and North et al
(1995) have extended Barnett’s work by prefiltering the input data stream to
enhance the signal-to-noise ratio. In essence, their work rotates the projections
into directions least affected by climate noise.

14




The work of these authors could be extended to make usc of our spectra
indices, if they were evaluated by geographical region. in addition, North's
formalism lends itself to evaluating XOI’s in the frequency domain, from the
data in figure 3. We have made calculations based on EOY expansions of thc
IRIS noise data in the frequency domain. The results of our study show ap-
proximately 50% enhancement of the signal in tile highly variable water-vapor
regions of the infrared spectrum, but little enhancement in themore important
15 pm carbon dioxide band.
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